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INTRODUCTION

In many questions of analysis we encounter the problem of approximating
a given norm by "simpler" ones. For example, if

II a [I = sup Ia(x)l,
O~x<l

a suitable candidate for an approximate norm is

II a 11m = max Ia (~)I,
O<k<m-I m

with m large. More generally,

(J
1 lip

II a II = 0 Ia(x)lp dX)

can be approximated by

(p ~ 1)

(m-1 I k 1'1' 1 )1/'1'
II a 11m = to a (n;-) m .

These are examples of so-called discrete approximations. In other problems,
one would like to approximate

II a II = sup I a(x) I
by

1 1/'Pm

II a 11m = (Jo I a(xW'm dX) ,
where Pm -+ ro.

We believe that it is worth while to put the above on a more formal basis.
The present paper is a first, modest attempt in this direction. In particular,
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our general point of view allows us to treat, in a more systematic fashion, the
convergence of a number of algorithms in approximation theory (discretiza
tion of continuous Tschebycheff-approximation, P61ya algorithm etc.) We
also give a new look at the little (or Hausdorff) moment problem. These
general ideas are also very useful in connection with the theory of interpola
tion spaces but this we shall treat elsewhere.

A notion of convergence of normed or, more generally, metric linear spaces
has been studied in a paper by Semadeni [7] but there seems to be hardly
any connection with the present work. (More close to our viewpoint comes
a paper by Kripke [3].)

The plan of the present paper is as follows. In Section 1, the general
definitions are given. In Section 2, we briefly review some known facts in
linear approximation theory. In Section 3, we give a general theorem on the
convergence of algorithms, along the lines of a theorem by Cheney [I] dealing
with the concrete case of approximation by algebraic polynomials. This case
is studied here in Section 4. Finally, in Section 5, we use our ideas in
connection with the moment problem, mentioned above.

I. BASIC DEFINITIONS

Let A be any vector space over R.

DEFINITION 1.1. By a norm 1111, we mean a mapping A -+ R+ : a -+ II a II
such that

II a + b II :( II a II + II b II,

II "a II = I " III a II·

Consider the linear subspace N = {a III a II = O}. If N = 0, we speak of a
proper norm. If N is of finite codimension, we speak of a discrete norm.

We have, thus, departed slightly from the usual terminology.

Our terminology

Norm
Proper norm

Usual terminology

Seminorm
Norm

DEFINITION 1.2. By a normed space we mean a vector space A with a fixed
(usually proper) norm II II = II IIA'
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Next, we consider sequences of norms II 11m on A (where, usually,
m = 1,2,...).

DEFINITION 1.3. II 11m is an approximation of II II if

lim II a 11m = II a II
m->oo

(Va E A).

If all norms II 11m are discrete, we speak of a discrete approximation.

DEFINITION 1.4. II 11m is a null-sequence if

lim II a 11m = 0
m->oo

The following result is obvious.

(Va E A).

PROPOSITION 1.1. II 11m is an approximation of II II if there exist null
sequences II II~ and II II~* such that

II a II :( II a 11m + II a II~ ,

!I a 11m :( II a II + II a 11';;*.

(1.1)

(1.2)

DEFINITION 1.5. II II~ is called a majorant of the approximation and II 11:'*
a minorant.

The following is a general way of constructing approximations: Let Am be
a sequence of normed spaces. Let there be given, for each m, linear mappings
Qm : A ......... Am and Pm : Am ......... A such that

(pointwise convergence: II Uma - a II ......... 0)

where we have set Um = PmQm' Then we may take

If

II Pma IIA = II a IIAm '

lim II Qma IIA :( II a II,
m-700 m

then clearly (cf. Theorem 5.1)

II a 11m ......... 11 a II = II aliA'
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If Um is of finite rank then this is a discrete approximation. Question: Does
any (separable) normed space admit a discretization of this type? The answer
is trivially positive if the space posseses a Schauder basis.

2. THE FUNDAMENTAL PROBLEM OF LINEAR ApPROXIMATION THEORY

Let B be a given subspace of a normed space A. Let us set

E(a) = E(a, A, B) = inf II a - b II.
bEB

Clearly

E(a) :::;;; II a - b II

and in particular (take b = 0),

E(a) :::;;; II a II·

(Vb E B)

The fundamental problem of linear approximation theory consists of finding
b E B such that

E(a) = II a - b II·

We say that b is a solution. It is a classical fact that a solution always exists in
the following two cases:

(a) B is finite dimensional (see [1], p. 20).

(b) A is uniformly convex, B is complete (see [1], p. 22).

(For more recent results in this direction, see also Cheney and Wulbert [2].)
Concerning uniqueness, we list two typical cases where it holds:

(eI:) A strictly convex, B finite dimensional (see [1], p. 23).

(13) II a II a Tschebycheff-norm (maximum-norm), B a Haar subspace
(see [1], p. 80).

(For more recent results, see, e.g., Phelps [6], Sipger [8].) If uniqueness holds,
we denote the unique solution by Ta (Tschebycheff-operator). Clearly,

E(a) = II a - Ta II :::;;; II a ~ b II

We say that we have strong uniqueness if

y II b - Ta II + II a - Ta II :::;;; II a - b II

(Vb E B).

(Vb E B)

where y > 0 depends on a only. Strong uniqueness is known to hold in case
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(f3) above (see [1], p.80). In case (ex), strong uniqueness does not hold. How
ever, we have the following substitute

-1 ( II b - Ta II )
E(a) Sl E(a) + II a - Ta II :(; II a - b II,

where

Sl(E) = (l + E) S (1 ~ J
S(E) denoting the modulus of convexity.

DEFINITION 2.1. By an algorithm for T we mean a sequence of
Tschebycheff-operators Tm corresponding to an approximation II . 11m of II . II.

3. CONVERGENCE OF ALGORITHMS (GENERAL CASE)

We consider the following situation: Tm is an algorithm for the
Tschebycheff-operator T. We assume (strong uniqueness) that

<p(11 b - Ta II) + II a - Ta II :(; II a - b II ('ib E B), (3.1)

<Pm(l! b - Tma 11m) + [I a - Tma 11m :(; II a - b 11m (Vb E B), (3.2)

where <P and <Pm are positive functions depending on a. We also assume that
there are given a majorant 1111;;; for 1IIIm such that

and a minorant II 11;;;* such that

(Vb E B)

(Vb E B)

(3.3)

(3.4)

for some constants Nm * and N:;*. If B is finite dimensional, the existence of
such constants is automatically guaranteed. Also Nm * ---+ 0 and N:;'* ---+ 0 as
m ---+ 00. First we prove:

LEMMA 3.1. If (3.3) holds and Nm * < 1, then

1
II b II :(; 1 _ N* II b 11m

m

Proof From (1.1) and (3.3)

(Vb E B). (3.5)

II b II :(; II b 11m + II b II.':: :(; II b 11m + Nm * II bit.
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Hence

Our main result is

PEETRE

(1 - Nm *) II b II :;::;; II b 11m.

THEOREM 3.1. Assume that (3.1), (3.2), (3.3), and (3.4) hold and that
Nm* < 1. Then

</>01 Ta - Tma II) + </>m(11 Ta - Tma 11m)

:;::;; II a II';; + II a 11';;* + 1 2j!'N* * II a 11m + 2N';;* II a II ('Va E A). (3.6)
m

Proof Using (3.1) and (3.2), we get

</>(11 Ta - Tma II) + </>mOI Ta - Tma 11m)
:::;; 01 a - Tma II -II a - Ta II) + 01 a - Ta 11m -II a - Tma 11m)'

But, by (1.1) and (1.2), we have

II a - Tma II-II a - Ta II:;::;; II a - Tma 11m -II a - Ta II + II a - Tma II::,

II a - Ta 11m - II a - Tma 11m:;::;; II a - Ta II - II a - Tma 11m + II a - Tma 11::*.

Adding up, we arrive at

</>01 Ta - Tma II) + </>m(11 Ta - Tma 11m) :;::;; II a - Tma II:: + II a - Ta 11::*.
(3.7)

We estimate each term separately. Using (3.3) and (3.5), we get

II a - Tma II:: :;::;; II a II:: + Nm* II Tma II :;::;; II a II:: + 1 !!m;m* II Tma 11m.

But

Hence

* * 2Nm * III a - Tma 11m:;::;; II a 11m + 1 _ N
m
* II a 1m.

Next, using (3.4), we get

II a - Ta 11';;* :::;; II a 11';;* + N';;* II Ta II.

But, again,

II Ta II :::;; II a II + II a - Ta II :;::;; 2 II a II·

(3.8)
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II a - Ta 11':* ,s; II a 11':* + 2N':* II a II·
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(3.9)

Inserting inequalities (3.8) and (3.9) into inequality (3.7), we end up with (3.6).
Q.E.D.

Two special cases deserve special mention.

COROLLARY 3.1. If II II~* = 0, so that II a 11m ,s; II a II (Va E A), and if
Nm* < 1, then

cPOITa - Tma II) + cPmOI Ta - Tma 11m) ,s; II a II': + 1 ~NN:* * II a II. (3.10)
m

COROLLARY 3.2. Ifll II~* = II II~, N;;'* = Nm* < 1, then

cPOITa - Tma II) + cPm(11 Ta - Tma 11m)

I * 2Nm * II 2 * I,s; 2 Ia 11m + 1 _ N
m
* a 11m + Nm II a I·

4. CONVERGENCE OF ALGORITHMS (CONCRETE CASES)

We now turn to concrete applications of the results of Section 3.

(3.11)

EXAMPLE 4.1. We take

A = Cl = the set of continuously differentiable functions on 1 = [0, 1],

B = the set of algebraic polynomials of degree ,s;n,

II a II = max I a(x)l,
XE]

II a 11m = max Ia(x)l,
xElm

where 1m is a finite subset of 1 consisting of points Xk , which we call nodes.
II a 11m is a discrete norm. Moreover,

II a 11m ,s; II a II,
so we can take (as in Corollary 3.1)

II a 11;;'* = 0.

Choose

(k = 0, 1,... , m - 1).
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(A slightly more advantageous choice would have been

k + (/2)
Xk = m (k = 0, 1,... , m - 1);

cf. [1], p. 93). Let Xk ~ x ~ Xk + 11m. Since

Hence we get

1
II a II ~ II a 11m + m II a' II,

so that we may choose

II a II';: = l.11 a' II.m

If bE B (i.e., b is a polynomial ofdegree ~n), we have by Markoff's inequality
(cf. [1], p. 91)

II b II';: = l.11 b' II ~ 2n
2

II b II.m m

Thus, we may take

N m* = 2n
2

•
m

Applying Corollary 3.1, we now get with ep(u) = yu (dropping the term
involving epm):

1 2(2n2Im)
y II Ta - Tma II ~ m II a' II + 1 _ (2n2Im) II a II (m > 2n2

), (4.1)

an inequality essentially contained in Cheney [1], p. 92. We are here particu
larly interested in the behavior of the left hand side of (4.1) as m -+ co.
Obviously, (4. I) implies

II Ta - Tma II = 0 ( ~). (4.2)

To improve this estimate we have to put further restrictions upon the
functions a. [Cheney's result in [1], p. 92, is in the opposite direction. He
requires just continuity of a and gets a weaker estimate in terms of
the modulus of continuity wet, a).]
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EXAMPLE 4.2. Take

A = C2 = the set of twice continuously differentiable functions on I = [0, 1],
B, II a II, II a 11m as in Example 4.1. We augment, however, 1m , by adding to it
Xm = mjm = 1. Thus, we have

k
Xli; =

m
(k = 0, 1, ... , m).

If Xk ~ X ~ Xli; + 11m = X k+1 , we use the formula

a(x) = a(xk) m(xk+1 - x) + a(xk+1) m(x - Xk) +rK(x, g) a"(g) dg,
o

with
if X ~ g,
if x ~ g,

and deduce

I a(x)j ~ max(1 a(x,,)I, I a(xk+l)l) + !ex - Xk)(Xk+l - x) max Ia"(g)!

~ II a 11m + 8~2 "a" II·

Hence
I

II a II ~ II a 11m + 8m 2 II a" II

and we are lead to take

Ii a II~ = 8~2 II a" II.

If b E B we get, again, by Markoff's inequality (iterated)

II b II';; = 8~2 II b" II ~ 2~2 II b II
and subsequently

n4

N *-m - 2m2 •

Corresponding to (4.1), we thus have

II Till /I II 2(n
4
j2m

2
) II

Y I Ta - rna II ~ m2 a + 1 _ (n4/2m 2) a II

and corresponding to (4.2),

II Ta - Tma II = 0 ( ~2 ).

(m > IjVL n2) (4.3)

(4.4)

We have improved the previous O(ljm) to O(ljm2). It does not seem likely
that this can be easily improved further; O(ljm2) is about the optimum which
we can hope for.
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Remark 4.1. A theoretical possibility of improving the estimate is,
however, the following. For each m, we consider the mapping (function to
sequence)

and the mapping (sequence to function)

rm

Pm : a - L hmk(x) ak ,
k=O

where hmk(x) are given functions and rm = 1 + card 1m . (In Example 4.1 we
had

if x E [xk, Xk + --,k-],
elsewhere,

and in Example 4.2,

lm(x - Xk-l)
hmk(x) = m(xk+1 - x)

o elsewhere

if x E [Xk-l , Xk],
if x E [Xk , Xk+l], rm = m + 1.)

The basic assumption is that

Um-I as m- 00,

where Um = PmQm' The corresponding assumptions on hmk(x) are well
known. Indeed, under suitable assumptions on hmk(x), it is even possible to
prove a much stronger result, namely,

C
II a - Umall < ~II alNl II.m

For example, it suffices to assume that

r m

L hmk(x) = 1,
k=l

rm

L (x - Xk) hmk(x) = 0,
k=l

rm

L (x - Xk)N-1hmk(x) = 0,
k-l

rm

sup L I x - Xk INI hmk(x) \ < 00.
m k=l
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A = CN = the set of N times continuously differentiable functions on

1= [0,1], II a 11m = II Uma II,

and B, II a II as before (Examples 4.1 and 4.2), we are, then, lead to

II Ta - Tma II = 0 ( ~N ). (4.5)

The problem is that II a 11m is quite a complicated norm, in general not of the
Tschebycheff type, so in concrete cases the computation of Tma might cause
difficulties and the fact that we have a better estimate will be of little actual
help.

EXAMPLE 4.3. We take A and B as in Example 4.1; A = Cl, B = the set
of polynomials of degree <n, but change the norms, namely,

and

(
1 )l/P

II a 11m = t I a(xk)IP m
m

Here 1 ~ p < 00. We have

(with Xk = ~).

m-l xk+lIm

= L: I (I a(x)[p - Ia(Xk)[P) dx
k=O Xk

In view of HOlder's inequality, the last integral is bounded above by

and, thus, the corresponding summand is bounded above by the last expression
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multiplied by 11m. Thus, using once more Holder's inequality (for sums), we
get

III a W' -II a II;' I ~ ~ (~: (:+lIm Ia(gW dg) I-lip (~: (:+lI
m

[ a'(gW dg) l/p

= L II a IIP-1 II a' 1[.
m

On the other hand,

I [I a liP - II a II::' I ~ II a II P
-
1I [I a II - II a 11m I,

and so,

III a II - II a 11m I ~ L II a' 1[·m
Thus, we can take

[I a II;; = II a 11;;* = L II a' II.
m

If bE B, we may apply the Lp-version of Markoff's inequality (cf. Stein [9])
and get

II b II;; = II b 11;:;* ~ pAp n
2

11 h' [I,
m

where A p is a constant depending on p only. Thus, we may take

Nm * = N* * = Bp n
2

m m

Applying Corollary 3.2, we now get with 4>(u) = yuq
, Ilq = max(t, 1 - lip),

y II Ta - Tma Ilq ~ Ap II a' II + 2(Bpn
2
/m). II a II + 2Bpn

2

I[ a [I
m I - (Bpn2/m) m m

(m > Bpn2), (4.6)
which, in particular, implies

II Ta - Tma II = 0 ( m~/q ). (4.7)

EXAMPLE 4.4. [P61ya (or de la Vallee-Poussin) algorithm.] Take

A = Co = the set of continuous functions on I = [0, 1],

B = the set of algebraic polynomials of degree ~n,

II a II = max Ia(x)l,
1

(f )
lIpm

II a 11m = 1 Ia(xWm dx ,
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where Pm -+ 00 as m -+ 00. From the inequality

I a(x) I < Iami + I x - gIII a' II,

we obtain by virtue of the Lp-triangle inequality for P ;;;, 1,

255

where Jh is any subinterval of I of length h < t, containing x. This yields

II a II ~ h-lIPm II a 11m + h II a' II

= II a 11m + «e(IOg(l/hl/Pm) - 1) II a 11m + h II a' II).

On the other hand, it is trivial that

Iiallm <lIall·
We now choose

h = h = 10gPm
m Pm

(This is about the best choice.) We then end up with

with C independent of m. Accordingly, we choose

II a II';; = CI;:Pm (II a II + II a' II), II a 11';;* = O.

If bE B, Markoff's inequality is again available. We do not include the
details and content ourselves with the estimate

m -+ 00. (4.8)

We feel that it is unlikely that this can be improved upon very much.

5. AN ABSTRACT MOMENT PROBLEM

Let A be a normed space and let Am be a sequence of such spaces. Let
Pm : Am -+ A and Qm : A -+ Am be as in Section 1, with

(5.1)
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where Um = PmQm' If ep is a continuous linear functional on A, its norm is
by definition given by

II ep IIA' = sup I ep(a) 1/11 a IIA .

Let us define, for each m, a continuous linear functional epm on Am, by setting

The corresponding norm is

What we term as a moment problem is to relate the norms II ep IIA- and
II epm liA '. To this end, we prove

m

THEOREM 5.1. Assume that besides (5.1), we have

il Pma IIA ~ II a IIAm ,

lim II Qma IIA ~ II a Ii·
m-700 m

Then

lim II epm IIA ' = II ep IIA' .
m~oo m

Proof. We have by (4.2)

Therefore

(5.2)

(5.3)

To prove an inequality in the opposite sense, choose, for € > 0, an a such
that

II aliA = 1,

and m so that

we have used (5.1). It follows that

But
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so that

lim I ep(UmO) I ~ [lim II epm IIA ,] lim II Umo II_ _ m m~co

m~OO m~oo

= [lim II epm IIA ,] II 0 II = lim II epm IIA '._ m _ m

m->OO

Therefore

lim II epm IIAm ' ~ II ep IIA'(l - 2e),
m->OO

and, e > 0 being arbitrary,

lim II epm IIAm ' ~ II ep IIA' .
m->OO

257

Q.E.D.

We now give a concrete application (corresponding to the classical little
moment problem; cf., e.g. [10], Chap. III).

EXAMPLE 5.1. We take

A = Co = the set of continuous functions on 1= [0, I],

with 1 ~p ~ 00

(interpreted as max I a(x) \ if p = (0),
xe]

Am = Euclidean (m + I)-space,

(

m I )l/P
II 0 Ik = II 0 II» = L I Ok IP -

k=O m

(interpreted as max I Ok I ifP = (0),
l'::::;;k~m

m

(Pmo)(x) = L f3km(X) Ok,
k=O

QmO = (0(0),0 (~ ),0 (~ ),...,0(1)).

We check the validity of (5.1), (5.2), and (5.3). That (5.1) holds is the classical
theorem of Bernstein (cf. [1], p. 66-69). Note that Um = PmQm is the
Bernstein operator. That (5.3) holds is obvious (existence of Riemann
integral, cf. also Example 4.3). There remains thus (5.2), i.e., the inequality

for 1 ~p ~ 00. (5.4)
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In view of the Schur interpolation theorem (a special case of the M. Riesz
interpolation theorem), it suffices to prove (5.4) in the extremal cases p = 1
and p = 00. We obtain

m

II Pma 111 ~ k~O II {3km 111 Iak I ~ m[O~kaJm II {3km 111] II aliI ,

II Pma 11<xl ~ II I {3km II II a 11<xl = II a 1100 .
k=O 00

Using the Euler integrals, we have

= (m) B(k + 1 _ k + 1) = (m) T(k + 1) T(mk + 1)
k ,m k T(m + 2)

_ (m) k! (m - k)! _ 1 <:. 1
- k (m + I)! - m + 1 '" m '

so that II Pma 111 ~ II aliI' Let 1> be any continuous linear functional on A. We
now have

Application of Theorem 5.1 thus yields

(

m , 1 )lIP'
111> IIA' = lim L I Akm II' - .

m~oo mk-O

This should be compared with the classical results (cf., notably, [8]).

(5.6)

Remark 5.1. Using a more general interpolation theorem we can cover
the case of an arbitrary rearrangement invariant norm (in place of the L p

norm II lip); cf. [3], p. 80. This is the widest range for Schur interpolation.
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EXAMPLE 5.2. We take

A = Cl = the set of continuously differentiable functions on I = [0, I],

II aliA = max I a'(x) I,
O<x~l

Am = Euclidean (m + I)-space

as in Example 5.1.

The following formula is of interest:

DPm = mPm-1LJ. (5.7)

Here D and LJ denote differentiation and the difference operators, respectively,
i.e.,

Da(x) = a'(x),

Using (5.7), it is not hard to see that

max I DUma(x) - Da(x) I -- 0 as m -- 00.
O.:s;:;x<l

In other words, (5.1) holds in this case, too. Also (5.2) and (5.3) can be
readily verified. If eP is any continuous linear functional on A, the corre
sponding ePm is again given by (5.5) and we have

where Akm is defined by

Ak-1.m - Ak •m = Ak,m

-Ao.m = Ao•m ,

(k = 1,... , m - 1),
(5.8)

Note that Akm is well-defined since the compatibility condition

for the solvability of (5.8) is obviously fulfilled. Application of Theorem 5.1
now yields

(5.9)
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Remark 5.2. The result (5.9) can be extended in several direction. For
example, we can treat the case of Lipschitz norms (i.e.,

II aliA = sup 1a(x) - a(Y)I/1 x - Y I'"

with 0 < ex < I). Here it is advantageous to use the theory of interpolation
spaces. Note that these spaces were used by Lofstrom [4] to solve a dual
problem.
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